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LETTER TO THE EDITOR 

Cuntz deformations of the exterior algebra 

Alexandra A Kehagiast 
Institute of Theorelid Physics. University of Nijmgen, Toemmiveld 1.6525 Nijmegeh Tk 
Netherlands 

Received 17 May 1993 

Abstract. We study here possible deformations of lhe usual exterior algebra of forms in M 
N-dimensional space X. For consistency reasons, these deformations are Cuna derivations on 
the commutative algebra of functions of X and, moreover, lhey are solutions of the quantum 
Yang-Baxter equation. Finally, consistent defmarions of !he exterior algebra in the N = I and 
N = 2 cares areexplicilly consrmfted and the retation of the present appmach to the ditTeerential 
calculus on quantum spaces is bn&y discussed. 

Although noncommutative geometry has deep roots into quantum mechanics, this notion 
has been introduced by Connes in his extension of the calculus of differential forms and the 
de Rham homology of currents [I]. Among the first implications was the construction of 
Yang-Mills-Higgs theory employing the C(X) €3 @(X) and later (H €3 C) C3 @(X) algebra, 
where H, C! are the fields of quartemions and complex numbers respectively and C(X) 
is the algebra of functions in X [Z] . Since then, there has existed a growing interest 
among theorists in studying non-commutative geometry [3,4]. A major reason for this is 
that noncommutative geometry is ultimately related to quantum groups [SI. The latter 
are connected with some important aspects of physics, such as quantum spin chains [6], 
conformal field theories [7], quantum integrable models [SI, and so on. However, the 
most celebrated motivation for such studies is that, possibly, noncommutative geometry 
will offer a way out of ultraviolet divergencies in quantum field theory [9]. We mention 
Madore’s confrontation of the problem in his fuzzy sphere construction [ 101. He observed 
that if the coordinates of a space are noncommuting operators, then there will exist an 
uncertainty principle between them. As a result, the space will gain a cellular shllcture like 
the one already met in the phase space of quantum mechanics. This will lead, hopefully, 
to a removal of ultraviolet divergencies and consequently to finite results in field theory. 
In particular, a space with these properties has been constructed, namely the fuzzy sphere 
space. This is a sphere embedded in R3 with coordinates x@ and SU(2) commutation 
relations. The corresponding problem for the Euclidean space RN has also been considered 
elsewhere [Ill. 

There also exists another proposal by Dimakis et ul [ 121 in which the coordinates are 
kept commutative but there exists non-commutativity between the coordinates and their 
differentials. In this particular case the continuity is lost and the space acquires a canonical 
lattice structure with lattice spacing a where a is the deformation parameter. Thus a 
deformation of the usual differential calculus produces a totally different space. A natural 
question that can be addressed is; do other deformations in the differential calculus exist and 
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what structure they will produce? We will see that there exist such deformations specified by 
a Cuntz derivation U [ 131 which, however, must satisfy the classical Yang-Baxter equation 
1141. 

It should also be noted that there exists another approach in the quantum groups 
framework. In particular, following Woronowicz [U] and’wess and Zumino [16], one can 
deal with a differential calculus in a space where neither the coordinates nor the differentials 
are the conventional ones. Thus, for the quantum plane [I71 for example, a consistent 
calculus exists and some interesting problems can be solved [IS]. 

It will be instructive first to see how one may build a differential calculus for an 
algebra A. Let us suppose that A is an algebra with elements a. We associate with every 
such element a symbol da and subsequently, we may construct the universal differential 
envelope QA of A as the space spanned by words build up of U and da [I, 3,191. In 
particular, we may express QA=@QPA, where W A  is the vector space of elements of the 
form OJ = aa da’ . . . d d ,  U E A. Moreover, the symbol d regarded as an operator acting on 
QA, satisfies: 

(i) The nilpotency condition 

(1) 2 d = O .  

(ii) The Leibniz rule 

d(mpW) = (aW+ + (-l)”opd0. (2) 

In view of (2), every element of QA can be written as a linear combination of elements 
of the form 

U0 no&’ ...dd dl2 ...dun. (3) 

For example, one may easily verify that 

u0(da’)a2 = aad(u1u2) - (u0a1)du2. 

The above treatment is quite general and states that whenever an algebra A is given as 
well as an operation which satisfies equations (I), (2). then we can construct a consistent 
differential envelope for the algebra. 

Let us now recall that there exists a natural endomorphism 1 : A + A which is specified 
by l(n) = a. Let us define also a second endomorphism p by deforming the previous one 
so that p(u)  = a  - q(a), where q : A + A. One may then easily verify that, in order for 
p to be an endomorphism, q must satisfy [3,131 

(4) 

Thus, q is a Cuntz derivation and satisfies a modified Leibniz rule. The above relation may 
also be written as 

d u b )  = q ( d b  + a m  - q(a)q(b). 

so that one may view q as a derivation twisted by the endomorphism p. We may now 
proceed along the same lines as before and define the universal object QA, the Cuntz 
algebra, which is generated by the a E A and the symbol 4(a) [13]. In view of the 
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written as a linear combination of relations (4), (5), every element in the algebra may 
elements of the form 

U' a'q(u9.. .q(a") 9fa') . . .9(a"). 

. .  For example, for the element &'9(d)a2 we have 

a09(a')u2 =~aod(a'a2) - aOa'q(az) - aOq(a')q(az). 

It should also be noted that there exists a Z2-construction of the Cuntz algebra carried out 
by Zekri [20]. 

To proceed further, let us suppose that A =C(X) is the associative algebra of functions 
on a space X. The diffmntialenvelope QA is thenthe exterior algebra, that is the algebra of 
differential forms A(X) [21]. Thus, Q°C(X) = A'(X) is the vector space of functions on X, 
Q'@(X) = A'(X) is the space of 1-forms generated,by dx' ,  i = 1.2, . . . ,dim X, Q z ( X )  = 
Az(X) is the space of 2-forms generated by dx" dxh,~it < i2  and so on. We may define 
multiplication of the p-forms wp E AP,  and^ the 9-form o, E Aq to be a . (p  + 9)-form 

E AP+q. However, in general, their product is not commutative but rather it satisfies 
. .  

6Jpp = (-1)qPw,o, . ~I . ,  

and, as a result, the functions, i.e. elements of A', commute wiih all fonns 

wpf = f o p .  

The exterior algebra can be deformed at @is point by an ansatz which, in one dimension, 
, .  . may be written a i  [12] , , .  . .  

[ f , b l =  adx af (6) 

where af is the partial derivative of f and a is a parameter. As a consequence of (6) 
a lattice structure emerges with lattice spacing a and thus, a deformation of the exterior 
algebra breaks continuity of space. Nevertheless, this is not the most general case one may 
consider. If we suppose for the commutator [A'(X), A'fX)] c A1(X), one may thenwrite, 
in one dimension, the most general relation 

[f, &I = -dx u(f) (7) 

Let us now try to find the consequences of such relation. Defining the diffekntial of a 
where u(f) is a mapping U : Ao -+ A" not specified at the moment. 

function f as 

df=dxaf  ~ ' (8) 

(note the relative position of and af) we find for the product fg  of two functions that 

d(fg) = dx W g ) .  

(Equation (8) defines the so-called right derivative which is different, in the present context, 
from the left one defined by df = af dx.) Since the exterior derivative satisfies the Leibniz 
rule (2). we find, by employing (7) that 

d u g )  = dx ( m g  + f dx (ag) = dx ( w g  + fag - u(f)ag. 
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As a result, one may immediately read off that the derivative satisfies 

a m )  = ( a m  + f a g  - u(f)ag. (9) 

To find out the nature of the deformation U (f), let us consider the action of the derivative 
in the niple product fgh. This product can be evaluated in two ways, namely, either as 
a(fg)h or af(gh) .  In view of the associativity of the algebra, the results must be identical 
in both cases and thus we will have 

a(fg)h + fgah  - u(fg)ah = <af)gh + m h )  - u(fia(gh). 

Employing above equation (12). we find that the deformation U must satisfy 

u(fg) = u(f)g + fuk) - u(f)u(g) (10) 

which is exactly (4). As a result. a consistent deformation of the usual differential calculus 
exists if the deformation U is a Cuna derivation. 

Let us now proceed with the exterior algebra in an N-dimensional space X. The exterior 
derivative d satisfies, as usual, the equations (I), (2) and let us twist the algebra anticipating 
the deformation [A'. A'l c A'. Since a base in A' is the differentials dx',  i = 1.2,. . . N. 
the anologue of (7) may be written in this case as 

[f, &'I = -dd uj(f) (11) 

where U: are deformations which must be specified. Proceeding as in the one-dimensional 
case before, we find that the partial derivative, defined as 

df = dxi aif 

satisfies the relation 

ai(fs)  = (aif)g + faig - uh=)ajg.  (12) 

Employing the associativity of the algebra of functions, the deformations u{ must satisfy 

u::(fg) = uj(f)g + fu!(g) - uftf)u:(g) (13) 

which states that u{(f) will also be Cuntz derivations. 
We may regard (12) as an operation equation and thus, it can be written as 

lai, f i  = aif - u:tf)aj. (14) 

One may also expect a non-trivial action of the partial derivative ai on the differentials dxj. 
We may express that as 

[ai, dxj] = dxi "{(a,). (15) 
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However, the U; are not expected to be independent of U;. To find out their relation, let us 
evduate the quantity a, f d r j .  One may easily verify, in view of (1 1) that 

a,(fdrj) = aif  d r j  = d r j  aif - drk u;l’(a,f). 

The same quantity may also be evduated after interchanging f and dx j  and using (14). In 
this case we find that 

a , ( f d r j )  = a i ( d r j f  -drkuj(f)) = d r i u : ’ ( a i ) f - ~ ’ ~ : ( a i ) u ~ ( f )  

and, as a result, a relation for U/, and may be written as 

a,u:(f) - vj(a;)f  + v:(ai)u;(f, = 0. (16) 

We are now in a position to compute more complicated expressions like ( a f d r j ) g .  
Since the operator in front of g contains non-commuting objects, there are two ways to 

’ evaluate this expression. Let us first evaluate it as it stands. Then, taking into account 
equations (14), (17), (18), we find that 

(a,f&)g = d r j ( a i f ) g - d r ‘ u : ( a i f ) g + d r ‘  

+ d x j f a i g  - d r ’ u J ~ ) a , g - - ~ u i ( f ) u l ( a ~ ) g  

+ dr’ u;(u:(f))u;(ak)g. (17) 

r j  k 
’ - dri u Y ( m : ’ w g  - d r j  u f ( f ) a x g  +dr uI (ui ( f m g  

We can now interchange the position of f &d dr j  and then proceed &the evaluation of 
the above quantity. The result we get in this way is 

(a,fdrj)g = (a, d r j  f ) g  - (a, dri u j ( f ) ) g  

= d r i d ( a i ) f g  - d r i v ; ( a i ) u l ( f ) g + d r j ( a i f ) g  - d x i  aiuf(f)g. 

Thus, we have two different expressions for the same quantity and consistency requirements 
leads to the constraint 
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If we apply the latter condition to the coordinates x", we find that 

aiui(xn) = UC 
which can be integrated and the result is 

U&") = ufxi  + cp. (19) 

In this patticular case, the condition (19) may be written as 

(20) j k  kj  mn kj = o  
V I I  - " I i  - "li umn 

or. defining 

we may write (20) as 

(23) i j  u?l - 61 gk Vmn r i  - m n .  

In the notation of (22). (21). equation (18) has the simple expression 

which is just the quantum Yang-Baxter equations (QYBE) [14] in component form. As 
a result, the consistency of nonstandard calculus is ultimately related to the existence of 
solutions of the Yang-Baxter system (26). (27). 

Having established the general framework, we are now in a position to apply our findings 
to some particular cases. In particular, we will focus our attention on the N = 1 and N = 2 
cases and we will hy to find exotic calculus on the one- and two-dimensional Euclidean 
space R' and R2 respectively. 

To begin with, let us first consider the N = 1 case. Here the functions are the usual 
functions on B' (parametrized by x )  and (10) for f = x is written as 

[ x ,  d x ]  = a d x x  + bdx 

where we have imposed the linearity condition (19) 

(28) 

U ( X )  = -ax - b. 
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We can also write (28) as 

x & = c d x x + b &  

with c = 1 + Q. One may easily verify that 

X" dx = dx (cx + b)" 

so that 

f ( x )  dx = dx f ( c x  + b). 

As a result, (9) may be written in this case as 

for the partial derivative, where the condition ax = 1 has been imposed. It is interesting 
to note that if c = 1, then (29) is just the discrete derivative [12], while when b = 0, (29) 
is the so called q-derivative [B]. This indicates a relagon between the Cuntz deformations 
and q-bosons [22]. Indeed, if we consider ax as an operator acting on functions, then it 
follows that 

This relation in the Fock-Bargmann representation (a + a, ai + x ) ,  is expressed as 

aat - c a b  = 1 

which is the commutation relation for q-particles obeying infinite statistics [23]. 
Before proceeding with the N = 2 case, some remarks are in order. As we have seen, 

the deformation parameter must be a solution of the QYBE in order to have a consistent 
calculus. However, some of these solutions may not be appropriate because we must 
also respect the usual commutativity of functions on Etz. This commutativity introduces 
constraints which can be formulated as follows. The deformation parameters satisfy (13) 
and if we interchange the function f with g the result will be the same since the algebra is 
commutative. This observation leads to the condition 

u!(f)u,L(g) = uCtg)u;(f). (30) 

~ 

~ 

If we define the matrices 

U' = (2) 

then (30) may be written as 

[U", U"] = 0. 
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As a result, exotic calculus in the usual exterior algebra exist if in addition to equations (26) 
and (27), (31) also holds. 

Let us now turn to the N = 2 case. Here, all the solutions of the constant QYBE are 
known [NI. So it is straightforward to verify that there exist two solutions which satisfy 
all the consistency requirements, namely equations (26), (27) and (31). These solutions can 
be written in a matrix form as 

1 0 0 0  1 0 0  0 

U I = ( U ~ ) = ( ~  0 1 0 0  o )  U Z = ( ~  0 1 0  0 .) (32) 

s o 0 1  s o o - 1  

where the upper indices count the rows and the lower the columns in the order (1 1,12,21,22). 
h analogy, the 67 may be expressed as 

/ 1  0 0 o\ / 1  0 0  o \  

\s-1 0 0 11 \s-1 0 0 -1) 

Finally, to specify the constants CL', we observe that choosing 

with A' a constant vector. (25) or (27) is automatically satisfied in view of (24) or (26) 
respectively. 

As a result, the exotic calculus in the N = 2 case can be expressed analytically as 

x d r  = d r x + s d y y + A d y  

ydx = d r y  

x d y = d y x  

Ydy=dyy 

which corresponds to the U1 solution and 

x dr = d x x  + sdy y + Ady 

y d r = d r y  

xdy =dyx  

Y dY = -dY Y 

(34) 

(35) 

which corresponds to the U2 solution. It should be noted that one may relax the condition 
of the commutativity of the functions. In this case there also exists a consistent differential 
calculus such as the well established differential calculus on the quantum plane [1&18]. 

As becomes clear from the above, the deformations one can make in the usual exterior 
algebra of forms are not unique. However, they can uniquely be specified by the Cuntz 
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relation (13) and the Yang-Baxter system (26). (27). The solution given in [I21 fits in this 
class of deformations and actually corresponds to the simple solution 

U!! I I  = 0 cf #O. 
As a final comment, let us note the similarity of the present approach to the quantum 

groups framework where analogous results are obtained [15,16]. The fundamental 
difference between the two cases is the commutativity of functions in the former c&e 
while in the latter the functions do not commute. 

We would like to thank A Dimakis, E G Floratos, 1 Madore and G Zoupanos for discussions. 
We are grateful to Professor C Dullemond for a careful reading of the manuscript and to 
A Sudbery for an enlightening correspondence, and for bringing 1241 to my attention. 
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