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LETTER TO THE EDITOR

Cuntz deformations of the exterior algebra

Alexandros A Kehagias}

Institute of Theoretical Physics, University of Nijmegen, Toemociveld 1, 6525 Nijmegen, The
Netherlands

Received 17 May 1993

Abstract. We study here possible deformations of the usual exterior algebra of forms in an
N-dimensional space X. For consistency reasons, these deformations are Cuniz derivations on
the commutative algebra of functions of X and, morcover, they are solutions of the quanturn
Yang-Baxter equation. Finatly, consistent deformations of the exterior algebra in the N =1 and
N = 2 cases are explicitly constructed and the relation of the present approach to the differential
calculus on quantum spaces is briefly discussed.

Although non-commutative geometry has deep roots into quantum mechanics, this notion
has been introduced by Connes in his extension of the calculus of differential forms and the
de Rham homology of currents [1]. Among the first implications was the construction of
Yang-Miils-Higgs theory employing the C(X) @& C(X) and later {H © C) ® C(X) algebra,
where H, C are the fields of quarternions and complex numbers respectively and C(X)
is the algebra of functions in X [2] . Since then, there has existed a growing interest
among theorists in studying non-commutative geometry [3,4]. A major reason for this is
that non-commutative geometry is ultimately related to quantum groups {5]. The latter
are copnected with some important aspects of physics, such as quantum spin chains [6].,
conformal field theories [7], quantum integrable models [8], and so on. However, the
most celebrated motivation for such studies is that, possibly, non-commutative geometry
will offer a way out of uitraviolet divergencies in quantum field theory {9]. We mention
Madore’s confrontation of the problem in his fuzzy sphere construction [10]. He observed
that if the coordinates of a space are non-commuting operators, then there will exist an
uncertainty principie between them. As a result, the space will gain a cellular structure like
the one already met in the phase space of quantum mechanics. This will lead, hopefuily,
to a removal of ultraviolet divergencies and consequently fo finite results in field theory.
In particular, a space with these properties has been constructed, namely the fuzzy sphere
space. This is a sphere embedded in R?® with coordinates x* and SU(2) commutation
relations. The corresponding problem for the Euclidean space RY has also been considered
elsewhere [11]. ,

There also exists another proposal by Dimakis et al [12] in which the coordinates are
kept commutative but there exists non-commutativity between the coordinates and their
differentials. In this particular case the continuity is lost and the space acquires a canonical
lattice structure with lattice spacing a where a is the deformation parameter. Thus 2
deformation of the usnal differential calculus produces 2 totally different space. A natural
question that can be addressed is; do other deformations in the differential calculus exist and
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what structure they will produce? We will see that there exist such deformations specified by
a Cuntz derivation # [13] which, however, must satisfy the classical Yang-Baxter equation
{141

It should also be noted that there exists another approach in the guantum groups
framework. In particular, following Woronowicz [15] and Wess and Zumino [16], one can
deal with a differential calculus in a space where neither the coordinates nor the differentials
are the conventional ones. Thus, for the quantum plane [17] for example, a consistent
calculus exists and some interesting problems can be solved [18].

It will be instructive first to see how one may build a differential calculus for an
algebra A. Let us suppose that .4 is an algebra with elements ¢. We associate with every
such element a symbol dz and subsequently, we may construct the universal differential
envelope Q.4 of A as the space spanned by words build up of & and dz [1,3,19]. In
particular, we may express QA=@0Q" A, where Q7.4 is the vector space of elements of the
form w = a%da' ...da”, a € A. Moreover, the symbol d regarded as an operator acting on
Q.A, satisfies:

(i) The nilpotency condition

d2=0. (1
(ii) The Leibniz rule
d(w,w) = (dwy)o + (~1)?w, do. 2

In view of (2), every element of 2.4 can be writien as a linear combination of elements
of the form

a a’da’ ... da" da'...da", 3)
For example, one may easily verify that
@"(da")a? = a® Ka'ad®) — (a%a")da?.

The above treatment is quite general and states that whenever an algebra A is given as
well as an operation which satisfies equations (1), (2), then we can construct a consistent
differential envelope for the algebra.

Let us now recall that there exists a natural endomorphism 1 : A — A which is specified
by 1(a) = a. Let us define also a second endomorphism p by deforming the previous one
so that p(a) = a — gq(a), where g : A — A. One may then easily verify that, in order for
p to be an endomorphism, ¢ must satisfy [3, 13]

q(ab) = q(a)b + aq(b) — q(a)q(d). 4)

Thus, g is a Cuntz derivation and satisfies a modified Leibniz rule. The above relation may
also be written as

g(ab) = g(a)b + p(a)q(b) (5)

so that one may view g as a derivation twisted by the endomorphism p. 'We may now
proceed along the same lines as before and define the universal obiect Q.A, the Cuntz
algebra, which is generated by the @ € A and the symbol gig) {13]. In view of the
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relations (4), (3), every element in the algebra may be written as a linear combination of
elements of the form

0

a®  d%q(d)...q@)  q@")...q@".

For example, for the element doq(al)a2 we have N
a®g(a")a? = a®d(a'a®) — o' q(a*) — ®q(a")g(a®).

It should also be noted that there exisis a Zz construction of the Cuntz algebra carried out
by Zekri [20]. i

To proceed further, let us suppose that A -C(X } is the associative algebra of functions
on a space X. The differential envelope 2.4 is then'the exterior algebra, that is the algebra of
differential forms A(X) [21]}. Thus, Q0C(X) = A%(X) is the vector space of functions on X,
QIC(X) = A'(X) is the space of 1-forms generated by dx’,{ = 1,2, ...,dim X, Q*(X) =
AZ(X) is the space of 2-forms generated by dx" dx%,#; < i, and so on. We may define
multiplication of the p-forms w, € AF, and-the g-form w,; € AY to be a(p 4 g)-form
Wpig € APTY, However, in general, their product is not commutative but rather it satisfies

wqm,, = ( D% wpw,
and, as a result, the funcuons, ie. elements of AL, commute wnth all forms
wp f = fewp.

The exterior algebra can be deformed at thlS point by an ansatz which, in one dimension,
may be written as [12]

[fid&x]=adxdf ‘ ®

where @f is the partial derivative of f and & is a parameter. As a consequence of (6)
a lattice structure emerges with lattice spacing & and thus, a deformation of the exterior
algebra breaks continuity of space. Nevertheless, this is not the most general case one may
consider. If we suppose for the commutator [A°(X), A1(X)] ¢ A!(X), one may then write,
in one dimension, the most general relation

[, dx] = —dx u(f) _ Q)

where u(f) is a mapping u : A® ~> A® not specified at the moment.
Let us now try to find the consequences of such relation. Defining the differential of a
function f as

df =dxdf ' (8)
(note the relative posmon of dx and 3f) we find for the product fg of two functions that

d(fg) = dx 3(fg)-

(Equation (8) defines the so-called right derivative which is different, in the present context,
from the left one defined by d f = 3f dx.) Since the exterior derivative satisfies the Leibniz
rule (2), we find, by employing (7) that

d(fg) = dx (3f)g + f dx (3g) = dx (3f)g + fdg — u(f)dg.
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As a result, one may immediately read off that the derivative satisfies
9(f2) = (8f)g + fog —u(f)ag. )

To find out the nature of the deformation u (f), let us consider the action of the derivative
in the triple product fgh. This product can be evaluated in two ways, namely, either as
3(fg)h or 3f (gh). In view of the associativity of the algebra, the results must be identical
in both cases and thus we will have

a(fg)h + fgdh — u(fg)ah = (3f)gh + f3(gh) — u(f)a(gh).
Employing above equation (12), we find that the deformation u must satisfy
u(fg) = u(f)g + fu(g) — u(fu(g) (10)
which is exactly (4). As a result, & consistent deformation of the usual differential calculus
exists if the deformation u is a Cuntz derivation.
Let us now proceed with the exterior algebrain an N -dlmensmnal space X. The exterior
derivative d satisfies, as usual, the equations (1), (2} and let us twist the algebra anticipating

the deformation [A°, A'] C Al. Since a base in A! is the differentials dx!,i = 1,2,... N,
the anologue of (7) may be written in this case as

[f, dx'] = —dx! ul(f) (11)

where uj,- are deformations which must be specified. Pro'caeding as in the one-dimensional
case before, we find that the partial derivative, defined as

df =dx' & f
so that
(xl) = 8!
satisfies the relation
3(f8) = @ )g + fag —ul (s (12)
Employing the associativity of the algebra of functions, the deformations uf must satisfy
u/(f8) = u}(fg + fu(e) ~ uf(Fui(e) (3)

which states that u{ (f) will also be Cuntz derivations.
We may regard (12) as an operation equation and thus, it can be written as

8, Fl=8F —ul (N3 (14)

One may also expect a non-trivial action of the partial derivative 8; on the differentials dx/.
We may express that as

[8;, dx’] = dx’ v/ (3). (15)
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However, the v} are not expected to be independent of u}. To find out their relation, let us
evaluate the quantity 3; f dx/. One may easily verify, in view of (11) that

8(f dxl)y = 8 f dx/ = dx/ & f — dx* ul (3, ).

The same quantity may alsc be evaluated after interchanging f and dx/ and using (14). In
this case we find that

8(f dxf) = 8:(da’ f — dx* wf(F)) = dx' v/ @) f — dx' o} @)} ()
and, as a result, a relation for vf , and u{ may be written as

3] () — v @) F + of @uf(f) =0. -8

We are now in a position to compute more complicated expressions like (3f dx/)g.

Since the operator in front of g contains non-commuting objects, there are two ways to
- evaluate this expression. Let us first evaluate it as it stands. Then, taking into account
equations (14), (17), (18), we find that
@ f dx)g = dx? (& g — dx' uf (& g + ' Fv] (B)g

+dxf fog — el uf (g — &' u (Fuf(3g

| - uf()v] B0g — dx) uf (F)deg + &x w] WE(F g
+ e’ a (e (F))v] B0)s- ’ an

We can now interchange the position of f and dx/ and then proceed in the evaluation of
the above quantity. The result we get in this way is

@& f dxh)g = @3 dx/ fig — @G dx' ui (Mg
=dx! vf(3)) fg — ax' v @ui(Frg + dxf (@:f)g — ax' e (e

Thus, we have two different expressions for the same quantity and consistency requirements
leads to the constraint -

Foi (@)g — ] (Foj (8 — ut (F)v] (0)g + W (b (F)v)(Be
= — 80 fg +ul B F) + v/ () fg ~ V @ui(F)g. (18)
The above expression is too compllcatcd to deal with. For this reason, we impose some

conditions on the deformations u/ and v/ and the simplest condition is linearity. Thus we
require

v (&) = v} 5
as well as

aui(f) = ulaf.
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If we apply the I;mer condition to the coordinates x”", we find that
Jul(x") = uﬁ'
which can be integrated and the result is
u}i(x") = uﬁ’xi + C;f". » (%)

In this particular case, the condition (19) may be written as

olf —up ol = ' (20
or, defining

Vi =sisl + ol @1)

Ui = 58] —uyy (22)

we may write (20) as
VI Ul =3 st (23)

In the notation of (22), (21), equation (18) has the simple expression

vibultug = ulkvive, (24)
ViU Ct = Ui . (25)

We can use (23) so that the above relations may be expressed as

ik 1

U UL UsS = UL U UK (26)
. )

Ui Ul C8 = UL UseCle (27)

which is just the quantum Yang-Baxter equations (QYBE) [14] in component form. As
a result, the consistency of non-standard calculus is ultimately related to the existence of
solutions of the Yang—Baxter system (26), (27).

Having established the general framework, we are now in a position to apply our findings
to some particular cases. In particular, we will focus our attention onthe N =l and N =2
cases and we will fry to find exotic calculus on the one- and two-dimensional Enclidean
space R! and R? respectively.

To begin with, let us first consider the N = 1 case. Here the functions are the usual
functions on R! (parametrized by x) and (10) for f = x is written as

[x,dx]=adxx+bdx (28)
where we have imposed the linearity condition (19)

w(x) = —ax - b.
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We can also write (28) as
xde =cdxx+bdx
with ¢ = 1 + a. One may easily verify that
x*dx = dx (cx + b)"
50 that
Flx)dx = dx f(cx +b).
As a result, (9) may be written in this case as
9(fg)(x) = 8f (x)g(x) + f(cx + b)ag(x)
which leads to the expression

flex +b) — f(x)
xc—1D+5b

f (x) = 29
for the partial derivative, where the condition dx = 1 has been imposed. It is interesting
to note that if ¢ = 1, then (29} is just the discrete derivative [12], while when b = 0, (29)
is the so called g-derivative [25]. This indicates a relagion between the Cuntz deformations

and g-bosons [22]. Indeed, if we consider dx as an operator acting or functions, then it
follows that : :

ox =1+ cxd.
This relation in the Fock—Bargmann representation (& — 8, &' — x), is expressed as
ea’ —cate =1

which is the commutation relation for g-particles obeying infinite statistics [23].

Before proceeding with the N = 2 case, some remarks are in order. As we have seen,
the deformation parameter must be a solution of the QYBE in order to have a consistent
calculus. However, some of these solutions may not be appropriate becavse we must
also respect the usual commutativity of functions on R?. This commutativity introduces.
constraints which can be formulated as follows. The deformation parameters satisfy (13)
and if we interchange the function f with g the result will be the same since the algebra is
commutative. This observation leads to the condition

ul (Fut(e) = ul(e)uk(f). ' (30)
If we define the matrices

U' = ul(x")
then (30) may be written as

[U™, U™ =0. | @D
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As a result, exotic calculus in the usnal exterior algebra exist if in addition to equations (26)
and (27), (31) also holds,

Let us now tum to the N = 2 case. Here, all the solutions of the constant QYBE are
known [24]. So it is straightforward to verify that there exist two solutions which satisfy
all the consistency requirements, namely equations (26), (27) and (31). These sclutions can
be written in a2 matrix form as

1000 100 0
s [0 100 010

h=Wa={g o1 ¢ =501 o G2
s 0 0 I s 0 0 -1

where the upper indices count the rows and the lower the columns in the order (11,12,21,22).
In analogy, the V,-’j’ may be expressed as

o= B e I )

V[ = Vz =

1
0
0 (33)
-1

[ e R )
===

1 0
c 0
0 1
=0

(== e R o

1

5 5

(=l B ]

Finally, to specify the constants C',f", we observe that choosing

Ci{ fa U:ftill

4

with A! a constant vector, (25) or (27) is automatically satisfied in view of (24) or (26)
respectively.
As a result, the exotic calculus in the N = 2 case can be expressed analytically as

xdt =dxx+sdyy+Ardy

ydx =dxy 34)
xdy =dyx
ydy =dyy
which corresponds to the U/; solution and
xdxr=dxx+4sdyy+aidy
yox=dey (35)
xdy=dyx
ydy=-dyy

which corresponds to the U, solution. It should be noted that one may relax the condition
of the commutativity of the functions. In this case there also exists a consistent differential
calculus such as the well established differential calculus on the quantum plane {16-18).
As becomes clear from the above, the deformations one can make in the usual exterior
algebra of forms are not unique, However, they can uniquely be specified by the Cuntz
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relation (13) and the Yang-Baxter system (26), (27). The solution given in [12] fits in this
class of deformations and actuatly corresponds to the simple solution

ul=0 ¢ #0.

As a final comment, let us note the similarity of the present approach to the quantum
groups framework where analogous results are obtained [15,16]. The fundamental
difference between the two cases is the commutativity of functions in the former case
while in the latter the functions do not commute.

We would like to thank A Dimakis, E G Floratos, J Madore and G Zoupanos for discussions.
We are grateful to Professor C Dullemond for a careful reading of the manuscript and to
A Sudbery for an enlightening correspondence, and for bringing [24] to my attention.
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